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Abstract

Artificial neural network (ANN) was used to model the monthly suspended sediment flux in the Longchuanjiang River, the Upper
Yangtze Catchment, China. The suspended sediment flux was related to the average rainfall, temperature, rainfall intensity and water
discharge. It is demonstrated that ANN is capable of modeling the monthly suspended sediment flux with fairly good accuracy when
proper variables and their lag effect on the suspended sediment flux are used as inputs. Compared with multiple linear regression and
power relation models, ANN can generate a better fit under the same data requirement. In addition, ANN can provide more reasonable
predictions for extremely high or low values, because of the distributed information processing system and the nonlinear transformation
involved. Compared with the ANNs that use the values of the dependent variable at previous time steps as inputs, the ANNs established
in this research with only climate variables have an advantage because it can be used to assess hydrological responses to climate change.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Suspended sediment flux in a river is an important
parameter for the management of hydraulic projects, and
an index for the status of soil erosion and ecological
environment of a catchment. Many empirically- and phy-
sically-based models have been developed to model the
suspended sediment flux of a catchment. Empirical mo-
dels estimate suspended sediment flux by relating it to
catchment characteristics such as drainage area, topogra-
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phy, land cover and climate (Flaxman, 1972; Walling,
1983; Verstraeten and Poesen, 2001; Zhou et al., 2002), as
well as deposition rates in ponds or reservoirs (Verstraeten
et al., 2003). They are widely used because of their
relatively simple structure and mathematical methods
involved, and their ability to work with limited input data.
Although this type of model is not able to represent the
spatial variability of hydrologic processes and catchment
parameters that influence the suspended sediment flux in a
river, Beven (2000) argued that as far as the response of an
entire water system is concerned, “it would appear that,
where calibration data are available, simple lumped para-
meter models can provide simulations as good as those
from complex physically based models”. However,
conventional linear or nonlinear regression models can
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only simulate the highly nonlinear suspended sediment
flux with limited accuracy, due to their simple model
structure and mathematical methods employed.

Physically-based models attempt to represent the
spatial heterogeneity of variables by dividing the
catchment into grids, and describe the processes of the
sediment transport from grid to grid with simplified
partial differential equations (Wicks and Bathurst, 1996;
Morgan et al., 1998; Van Oost et al., 2000). Their
distributed structure allows us to evaluate the influence
of land management measures on soil erosion. However,
some researchers argued that the inadequate scientific
basis was a major constraint for the application of dis-
tributed hydrological models to suspended sediment
flux modeling (Refsgaard and Abbott, 1996). The partial
differential equations used for sediment transport were
based on some “unrealistic simplifying assumptions for
flow and empirical relationships for erosive effects of
rainfall and flow” (Kisi, 2004). Although sophisticated
distribution models can provide satisfactory simulation
and prediction for small and heavily instrumented
catchments (usually less than 100 km2), their applica-
tions at regional and larger scales are unrealistic, be-
cause the quantity and quality of necessary input data
are usually insufficient.

Artificial neural network (ANN), a massively parallel-
distributed information processing system, is based on
concepts derived from research on the nature of human
brains (Müller et al., 1995). It has many distinct advant-
ages for hydrological modeling. For example, it can
approximate any arbitrary continuous functions, simulate
a nonlinear system without a priori assumption of
processes involved, and give a good solution even when
input data are incomplete or ambiguous (ASCE, 2000a,b).
Table 1
Characteristics of previous work on modeling sediment discharge with ANN

Reference Dependent variable Independent varia

Abrahart and White
(2001)

Sediment load (kg) Rainfall, peak 30
rainfall intensity, r
runoff/rainfall rati

Agarwal et al.
(2005)

Suspended sediment discharge
(kg s−1)

Rainfall, runoff,
sediment yield

Bhattacharya et al.
(2005)

Sediment transport rate
(m3 s−1)

Flow velocity, dep
particle size, energ

Jain (2001) Suspended sediment concentration
(mg l−1)

River stage, water
sediment concentr

Kisi (2004) Suspended sediment concentration
(mg l−1)

Runoff, sediment
concentration

Tayfur (2002) Sheet sediment transport
(kg m−1 s−1)

Slope, rainfall inte
ANN was introduced into hydrological modeling in the
1990s (Singh and Woolhiser, 2002) and has been
successfully used in rainfall–runoff modeling (Tokar
and Markus, 2000; Rajurkar et al., 2004), stream flow
forecasting (Campolo et al., 1999; Liong et al., 2000;
Cigizoglu, 2003), water quality assessment (Clair and
Ehrman, 1998), draught analysis (Shin and Salas, 2000)
and reservoir operations modeling (Golob et al., 1998).

There are, however, not many reports on the appli-
cation of ANN in sediment studies, though it may also
offer a promising alternative for conventional empirical
and physically-based models. The research conducted by
Abrahart and White (2001), Jain (2001), Tayfur (2002),
Kisi (2004) and Agarwal et al. (2005) may be deemed as
pathfinder experiments in this area. Details of these
studies, such as variables used and temporal scales em-
ployed, are summarized in Table 1. Abrahart and White
(2001) applied ANN to predict sediment flux occurring
under different types of agriculture and land use ma-
nagement. They predicted suspended sediment loads in
four catchments from rainfall, runoff, runoff coefficient
and fuzzy set membership variables representing land use
status. The results indicated that ANN could provide a
better fit to the data than the multiple linear regression
method. Tayfur (2002) used ANN to simulate experi-
mentally observed sediment fluxes from different slopes
under various rainfall intensities. The study indicated that
the performance of ANN with only slope and rainfall
information as inputs could be as good as that of a
physically-basedmodel withmuchmore variables such as
flow velocity, infiltration rate, shear stress, stream power,
and unit stream power. Jain (2001) applied ANN to
establish an integrated stage–discharge–sediment con-
centration relation for two sites on the Mississippi River.
bles Drainage area Temporal
scale

Time span

min
unoff,
o, land use

Four small
catchments in
Bvumbwe, Malawi

Daily 117 records related
to 1981∼1985 rain
seasons

7820 km2 Daily, weekly,
ten-daily,
monthly

10 years
(1984∼1989,
1992∼1995)

th of flow,
y slope

55 flume and 24
field observations

Experimental data

discharge,
ation

1) 1,835,276 km2 Daily 1) 1985∼1987
2) 1,847,190 km2 2) 1990∼1991
1) 10,521 km2 Daily 5 years

(1977∼1981)2) 13,932 km2

nsity 1 .52 m × 4 .58 m
flume

Minute Experimental data
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Five combinations of inputs including water stage, water
discharge and sediment concentration at current and
previous time steps were evaluated. By comparing the
performance of ANN with the conventional curve-fitting
method, Jain (2001) concluded that ANN could provide
an estimate closer to observed suspended sediment
concentration. Kisi (2004) used ANN to simulate daily
suspended sediment concentration at two stations on the
Tongue River in Montana, USA. He tried different
combinations of inputs to predict the sediment concen-
tration, e.g. water discharges at both current and previous
time steps, sediment concentrations at previous time steps
at the station of interest, as well as data from the upstream
station. These studies demonstrated that the modeling of
sediment, including its concentration in a river or flux
from a slope or a watershed, is possible through the use of
ANN. The time scale of most of the aforementioned
papers is daily, except that Agarwal et al. (2005) tried to
relate suspended sediment flux to rainfall and runoff on a
monthly scale with limited records of a 10-year span. A
common approach adopted by the above papers is that
water and suspended sediment flux at previous time steps
were used as inputs. It may increase the accuracy of the
simulation. However, ANNs established by this method
are unable to explain the contribution from climatic
variables. Also, they are insufficient to predict sediment
flux if water and sediment data for previous time periods
are not available.

In this research, we applied ANN to simulate mon-
thly suspended sediment flux from 1960 to 2001 in the
Longchuanjiang River of the Upper Yangtze Catchment,
China. Instead of using water and suspended sediment
flux at previous time steps as inputs, we attempted to
relate the suspended sediment flux to the original dri-
ving forces, i.e., climatic variables such as rainfall,
temperature, and rainfall intensity, to establish an ANN
model that can be used to explore the relationships
between the climate inputs and sediment responses. The
ANN constructed from climatic variables only will have
a potential of filling missing data in a suspended sedi-
ment flux time series and predicting the influence of
climatic change on suspended sediment flux. The ad-
vantages of ANN were also evaluated by comparing its
performance with that of multiple linear regression
(MLR) models and power relation (PR) models.

2. Study area and data used

2.1. Study area

The study area along the Longchuanjiang River is
located at 24°45′N∼26°15′N and 100°56′E∼102°02′E,
Southwest China (Fig. 1). The Longchuanjiang is a
tributary of the Upper Yangtze River. The length of the
main channel is 231.2 km. The Huangguayuan gauging
station is located at the lower reach of the river (Fig. 1),
which has a drainage area of 5560 km2. The Long-
chuanjiang catchment has a subtropical monsoon cli-
mate characterized by dramatically different rainfall
levels between the wet and dry seasons. The average
annual rainfall is ca. 800 mm, with 86∼94% of the total
rainfall occurring in the wet season from May to
October. Consequently, most of sediment transport in
the river occurs during the wet season. There are six
weather stations within or nearby the catchment (Fig. 1).

More than 50% of the area in the catchment is
affected by soil erosion (Yunnan Bureau of Water
Resources and Hydropower, Tianjin Survey and Design
Institute, 1987). The erosion is attributed to both the
natural environment and human activity. More than 60%
of the catchment is covered by “purplish soil” (belongs
to skeletol primitive soils in the Chinese classification
by China National Soil Survey, 1992), which is very
susceptible to water erosion. Furthermore, rainfall in the
wet season has high intensity and frequency. In addition,
there are human influences under the pressure from
population growth and rapid economic development,
such as deforestation, reforestation, intensified agricul-
ture activity, reservoir building, stone excavation, and
road construction. For example, forest cover in the
catchment declined from 36.9% in 1949 to 24.7% in
1985, followed by a gradual recovery in the late 1990s;
the total storage capacity of the reservoirs in the
catchment increased from 0.28 m3 in 1948 to 8.76 m3

in 2002, which would contribute to sediment storage
and a subsequent decrease of sediment in the river (Zhou
et al., 2004; Lu, 2005) as happened in other places in the
Upper Yangtze (Lu and Higgitt, 1998; Lu et al., 2003);
and the road length drastically increased from 451 km in
1949 to 14801 km in 2002. All the human activities may
contribute positively or negatively to the sediment con-
centration in the river.

The average annual water discharge and suspended
sediment load at Huangguayuan are 817 million m3 and
5.38 million tons, respectively. Both the water discharge
and suspended sediment load tended to increase after
1990, but the rate of increase in the sediment load was
faster (Fig. 2). This disproportional change of water and
sediment could result from their nonlinear relationship
and/or other factors such as land surface disturbance
influencing the generation and transportation of sedi-
ment. If the effect of the non-linearity is dominant, ANN
with climatic and water discharge data as inputs would
be effective in modeling suspended sediment transport,



Fig. 1. Map of the Longchuanjiang catchment and the Thiessen polygons of weather stations.

Fig. 2. Time series of annual suspended sediment load and water
discharge at Huangguayuan.
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but large error is expected if factors other than climate
and water dominate.

2.2. Data

Daily suspended sediment flux and water discharge
data at the Huangguayuan gauging station from 1960 to
2001 were collected. At the station, water level was
recorded automatically 24 h a day. Suspended sediment
concentration (SSC) and water discharge were measured
manually once a day at 8:00 a.m., and more samples
were taken during floods. Suspended sediment flux at
each time point is calculated as SSC multiplied by water
discharge (Chinese Ministry of Water Resources, 1999).
Monthly average suspended sediment flux and water
discharge were derived from the collected daily sedi-
ment and water discharge data.

The climatic inputs were selected based on physical
relationships between the input and output variables and
a pruning process. Rainfall is the direct driving force of
sediment production and transportation. Temperature
can influence the sediment generation and transportation
through several indirect ways, e.g. through its influence
on the evapotranspiration, runoff and residue decompo-
sition rate. Syvitski et al. (2003) used temperature as one
of the variables, among basin area and relief, to predict
the long-term sediment discharge. In the beginning of
our study, four climatic variables, monthly average
temperature (T), rainfall (R), evaporation (E) and humi-
dity (H) were considered as inputs. Neural networks



Table 2
Statistical parameters of hydro-climatic data for the Longchuanjiang catchment

Statistics T (°C) R (mm day−1) R25 (mm month−1) R50 (mm month−1) Q (m3 s−1) Qs (kg s−1)

Max 24.3 11.5 249.5 117.3 288 2350
Min 7.4 0 0 0 0.26 0
Mean 18.5 3.1 23.21 3.87 38.08 259.81
S.D. 4.5 2.4 35.31 15.28 45.40 394.04
Coefficient of variation 0.24 0.75 1.52 3.94 1.19 1.52
Skewness −0.91 0.60 2.12 4.11 2.16 2.40
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were established with these inputs and it was found that
rainfall and temperature were closely related with the
sediment flux, while adding evaporation and humidity
as inputs did not improve the performance of the net-
works. As a result, evaporation and humidity were de-
leted from the input list. In addition, given the influence
of intensive rainfall on sediment, variables that represent
the frequency of storm events (N25 and N50: numbers of
≥25 mm and ≥50 mm rainfall days in a month,
respectively) and the intensity of the events (R25 and
R50: cumulative rainfall in ≥25 mm and ≥50 mm
rainfall days in a month) were also considered. How-
ever, the correlation coefficients between N25 and R25 as
well as N50 and R50 are larger than 0.95. Thus, N25 and
N50 were not used for analysis. Consequently, R, T, R25

and R50 were selected as input variables. The time series
of daily temperature and rainfall from the six weather
stations were collected, and the climatic variables were
converted into the areal averaged value using the
Thiessen method (Croley and Hartmann, 1985). The
Thiessen polygons in the study area are shown in Fig. 1.

The hydrologic and climatic data for 36 years, 1960,
1963, 1965–1966 and 1970–2001, were used in this
study. Because of the influence from themonsoon climate,
Table 3
Correlation coefficients (r) of the hydro-climatic data for the Longchuanjian

T R R25 R50 Q Tt−1 Rt−1 Qt−1

T 1 0.594 0.357 0.179 0.253 0.882 0.261 0.00
R 1 0.732 0.384 0.707 0.698 0.467 0.12
R25 1 0.609 0.564 0.406 0.258 0.06
R50 1 0.238 0.184 0.000 0.08
Q 1 0.364 0.701 0.59
Tt−1 1 0.394 0.09
Rt−1 1 0.71
Qt−1 1
Tt−2
Rt−2

Qt−2

Tt−3
Rt−3

Qt−3

Qs

Italic numbers represent negative correlations.
sediment fluxes from January to April were very low,
accounting for less than 3% of the annual total sediment
load. To study sediment fluxes in this period looks
insignificant for both model evaluation and practical
applications. Thus, only data in 8 months (May to De-
cember) were used for the modeling. The statistical para-
meters of the climatic and hydrologic variables, R, T, R25,
R50, as well as water discharge (Q) and suspended
sediment flux (Qs) are listed in Table 2. The correlation
coefficients between these variables of up to previous
3 months are given in Table 3. It can be seen that the
suspended sediment flux has relatively higher linear
correlations with water discharge, rainfall and R25.

3. Methodology

3.1. Data processing

The original data were processed through two steps:
data standardization and data set partition. The original
input and output data consist of different parameters
with different physical meaning and units, and thus their
ranges are highly variable. To ensure that each variable
is treated equally in a model, data are usually rescaled to
g catchment

Tt−2 Rt−2 Qt−2 Tt−3 Rt−3 Qt−3 Qs

0 0.267 0.191 0.339 0.355 0.570 0.586 0.352
8 0.477 0.024 0.214 0.049 0.361 0.445 0.760
6 0.256 0.062 0.135 0.050 0.227 0.275 0.672
4 0.057 0.122 0.134 0.115 0.143 0.144 0.320
7 0.455 0.397 0.214 0.287 0.077 0.080 0.855
6 0.570 0.028 0.187 0.014 0.357 0.470 0.418
7 0.714 0.490 0.170 0.538 0.143 0.101 0.557

0.387 0.712 0.615 0.466 0.458 0.288 0.326
1 0.418 0.126 0.708 0.189 0.064 0.406

1 0.737 0.707 0.587 0.284 0.148
1 0.425 0.746 0.672 0.037

1 0.543 0.289 0.133
1 0.771 0.135

1 0.240
1



Fig. 3. Architecture of the MLP used and the schematic representation of a neuron.
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a certain interval such as [−1, 1], [0.1, 0.9] or [0, 1]
(Dawson and Wilby, 2001). The advantage of using
[0.1, 0.9] is the accommodation of possible extreme
values outside the range of the calibration data (Hsu
et al., 1995; Imrie et al., 2000). The input and output
variables for the present study were standardized into
the interval [0.1, 0.9]:

Xistd ¼ 0:1þ 0:8� Xi−Ximin

Ximax−Ximin
ð1Þ

where xistd is the standardized value of variable i, xi is
the original value, and ximax and ximin are the maximum
and minimum of variable i, respectively.

For model calibration and validation, the input data
are usually divided into a calibration set and a validation
set. To avoid the problem of over-fitting, one more data
set, a test set, was extracted and used for cross-validation
of the network in this study (Anctil and Lauzon, 2004).
The representativeness of the data sets used for
calibration and test should be carefully considered.
Networks trained with a data set that represents the
characteristics of the hydrologic patterns will achieve
higher generalization ability. Tokar and Johnson (1999)
suggested that for rainfall–runoff modeling, the network
trained with the dry-, average- and wet-year data could
produce more accurate prediction than those trained with
only dry- and average-year data. Given the close
relationship among rainfall, runoff and sediment, this
method may also be applied to data set partitioning for
sediment modeling. Thus, in this study, the data were
first classified into wet-, average- or dry-year data groups
according to the rainfall of each year. The number of the
years in the wet group is 10, that in the average group is
12, and that in the dry group is 14. Then 15 years' data,
with five from each group, were extracted randomly to
form the validation set; 5 years' data, with one from the
dry-year, two from the average-year and the other two
from the wet-year data group, were extracted to form the
test set; the rest 16 years' data were combined to form the
calibration dataset.

3.2. Artificial neural networks (ANNs)

ANNs can be categorized into feed forward and
recurrent networks according to the direction of the
information flow and processing. Multilayer perception
(MLP) is a feed forward network. Detailed information
about MLP is found in literature (e.g. Müller et al.,
1995; Schalkoff, 1997). Many studies have shown that
MLP is a universal approximator. A MLP with one
hidden layer is capable of approximating any finite
nonlinear function with very high accuracy (Hornik
et al., 1989; Schalkoff, 1997). The MLP in the present
study consisted of an input layer, a hidden layer and an
output layer. Each neuron in each layer was connected to
all neurons in the adjacent layers but the information
flowed only in one direction, from the input side to the
output side. The architecture of the neural network used
in this study and the schematic representation of a
neuron are shown in Fig. 3.

The neuron in the output layer represents suspended
sediment flux (Fig. 3). The number of neurons in the
hidden layers was decided by a trial-and-error method.



Table 4
Performances of ANNs, MLR and PR models

Model Group Inputs Calibration a Testing b Validation c

RMSEd r2 RMSEd r2 RMSEd r2

ANN I 1 (T,R)t 260.31 0.666 184.23 0.541 216.28 0.663
2 (T,R)t, (T,R)t−1 216.18 0.767 141.92 0.729 195.39 0.765
3 (T,R)t, (T,R)t−1, (T,R)t−2 214.86 0.769 145.98 0.713 206.10 0.746
4 (T,R)t, (T,R)t−1, (T,R)t−2, (T,R)t−3 214.55 0.770 145.21 0.717 202.99 0.755

II 5 (T,R,R25,R50)t 255.57 0.680 187.84 0.524 201.01 0.706
6 (T,R,R25,R50)t, (T,R)t−1 202.76 0.790 141.87 0.732 182.56 0.800
7 (T,R,R25,R50)t, (T,R)t−1, (T,R)t−2 200.11 0.793 143.59 0.725 201.44 0.778
8 (T,R,R25,R50)t, (T,R)t−1, (T,R)t−2, (T,R)t−3 202.66 0.793 145.05 0.720 181.82 0.784

III 9 (T,R,Q)t 186.91 0.817 120.99 0.817 164.30 0.893
10 (T,R,Q)t, (T,R,Q)t−1 179.41 0.834 121.22 0.808 168.23 0.888
11 (T,R,Q)t, (T,R,Q)t−1, (T,R,Q)t−2 177.95 0.838 119.62 0.818 172.90 0.871
12 T,R,Q)t, (T,R,Q)t−1, (T,R,Q)t−2, (T,R,Q)t−3 170.09 0.848 120.82 0.813 184.88 0.864

IV 13 (Q)t 239.97 0.696 145.13 0.716 200.13 0.836
14 (Q)t, (Q)t−1 212.85 0.767 147.85 0.714 166.65 0.882
15 (Q)t, (Q)t−1, (Q)t−2 194.89 0.803 128.54 0.804 182.00 0.857
16 (Q)t, (Q)t−1, (Q)t−2 (Q)t−3 193.78 0.806 126.46 0.806 173.67 0.865

MLR A (T,R)t, (T,R)t−1 232.34 0.668 227.08 0.690
B (T,R,R25,R50)t, (T,R)t−1 224.10 0.691 215.64 0.721
C (T,R,Q)t 196.75 0.762 184.69 0.862

PR (Q)t 535.83 0.569 1135.58 0.631

a Number of records is 128 for ANNs and 168 for MLR and RC models.
b Number of records is 40.
c Number of records is 120.
d In kg s−1.
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Neurons in the input layer represent input variables. In
this study, sixteen input combinations, which fell in four
groups, were used (Table 4). The networks in different
groups were designed to compare the performances of
different sets of causal variables; while those in the same
group were designed to examine the degree of lag-effect
between the inputs and the outputs. The networks in
Group I (Table 4), ANN_1 to ANN_4, used rainfall (R)
and temperature (T) only as causal variables. In ANN_1,
R and T of the current month were used as inputs. R and
T in previous 1, 2, and 3 months were added as extra
inputs to form ANN_2, _3, _4, respectively, to consider
the lag effect between the causal variables and the
sediment output. In Group II, in view of the influence of
intensive rainfall on the sediment, R25 and R50 at the
current month were added as extra inputs. Networks in
Group III used both climatic and hydrologic variables as
inputs. They were constructed by adding water dis-
charge as additional causal variables to the networks in
Group I. Networks in Group IV tried to predict sediment
from water discharge only.

The networks were trained with a Back-Propagation
(BP) algorithm. BP training involves information pro-
cessing in two directions, the feed forward of the input
information and the back-propagation of the error. The
input information is processed in the neurons of the
input layer and is passed down to the next layer through
the links. Each neuron calculates its net input (Sj) as the
weighted sum of all inputs, as defined in Fig. 3. Before
the information is passed to the next layer, a further
transformation is conducted to amplify or inhibit neu-
ron's net input through a transformation function, f (Sj),
associated with each neuron. A logistic sigmoid func-
tion, which was widely used in current hydrological
modeling, was chosen as the transformation function
(Fig. 3). When the information processes reach the last
layer and the final output is produced, an error indica-
ting the difference between the predicted and observed
outputs is computed. This error is back-propagated
through the network to each neuron, and correspond-
ingly the connection weights are adjusted based on the
steepest gradient descent of the error function, with the
direction vector being set equal to the negative of the
gradient vector:

DW ij nð Þ ¼ −e
AE
AW ij

þ aDW ijðn−1Þ ð2Þ

where ΔWij(n) and ΔWij(n−1) are weight increments
between neuron i and j during the n-th and (n−1)-th



Fig. 4. Comparisons between the observed and predicted sediment fluxes based on validation data: (a) ANN_2, (b) ANN_6, (c) ANN_9 and
(d) ANN_14.

118 Y.-M. Zhu et al. / Geomorphology 84 (2007) 111–125
epoch (or round), ε is the learning rate, and α is the
momentum. In this study, the training was done with the
software Neuroshell 2. The training process was stopped
when the average error of the network started to rise.
The network was recorded on the best test result.

After the networks had been calibrated and validated,
their performances were assessed with two statistics, root
mean square error (RMSE) and coefficient of determination
(r2). The best performing networks of each group were
identified and their input combinations were used for
multiple linear regression models.

3.3. Multiple linear regression (MLR) and power
relation (PR) models

Multiple linear regression (MLR) and power relation
(PR) models were employed to simulate the relationship
between the input variables and the suspended sediment
flux. The MLR model is denoted as:

Q̂si ¼ b0 þ b1xi1 þ b2xi2 þ : : : þ bkxik þ ei ð3Þ

where xij is the j-th independent variable for the i-th
pattern; εi is the value of random fluctuation or error for
the i-th pattern; b0 is the regression intercept and bj is
the coefficient of the j-th independent variable. Three
MLR models with the same input combinations as the
best performing networks from ANN Group I, Group II
and Group III, respectively, were established.

The PR model in the present study took the form of
the conventional rating curve model but worked on
monthly scale:

Qs ¼ aQb ð4Þ



Table 5
Estimated MLR and PR models

Model Equation

MLR_A Qs=0.22+0.21*Tt+0.725*Rt−0.645*Tt−1+0.254*Rt−1

MLR_B Qs= 0.183+ 0.22 *Tt+0.551 *Rt+0.28*R25− 0.001*R50

−0.608*Tt−1+0.278*Rt−1

MLR_C Qs=−0.059+0.021*Rt+0.26*Tt+0.785*Qt

PR Qs=0.031*Qt
2.265

119Y.-M. Zhu et al. / Geomorphology 84 (2007) 111–125
where a and b are the constants. Because the PR model
stemmed from the rating curve, which is designed to
study the direct relationship between water discharge
and sediment flux, we used the original data for the
modeling (sediment flux in kg s−1 and water discharge
in m3 s−1), instead of the standardized ones. The
performances of the MLR and PR models were also
evaluated using RMSE and r2, and were compared with
those of ANNs.

4. Application and results

4.1. ANN

The RMSE and r2 values of the sixteen ANNs during
calibration, testing and validation periods are given in
Table 4. Our focus of the discussion below is on the values
for the validation period, because the generalization
ability of the networks is of interest for the application.

The networks in Group I based only on the average
rainfall and temperature show relatively poor perfor-
mances. The r2 of ANN_1, ANN_2, ANN_3 and ANN_4
during the validation period are 0.663, 0.765, 0.746 and
0.755, respectively. ANN_2, with the lowest RMSE and
highest r2, is identified as the best performing network of
this group.

In Group II, the RMSE and r2 of ANN_5 during the
validation period are 201.01 kg s− 1 and 0.706,
respectively. ANN_6 shows a significant improvement,
due to the inclusion of T and R for the previous month,
with an RMSE of 182.56 kg s−1 and an r2 of 0.800. The
performances of ANN_7 and ANN_8 are not as good as
the performance of ANN_6, although more information
from previous months is used. ANN_6 is selected as the
best performing network of Group 2.

The performances of the networks in Group III are
dramatically improved, compared with those in Groups I
and II. This is mainly due to the close relationship bet-
ween the suspended sediment flux and water discharge.
The r2 values of ANN_9, _10, _11 and _12 during the
validation period are 0.893, 0.888, 0.871 and 0.864,
respectively. ANN_9, with T, P and Q only at the current
month provided the best simulation.

ANN_14 is the best performing network in Group IV,
with an RMSE of 166.65 kg s−1 and an r2 of 0.836 in
the validation period. The comparison of the observed
and predicted suspended sediment fluxes for the four
best performing networks, ANN_2, _6, _9 and _14, are
plotted in Fig. 4. It can be observed that the pattern of
sediment flux including peaks is well predicted. All the
four networks provide better simulation results for years
with lower suspended sediment flux.
Table 4 shows that in each group, as more inputs are
used, the performances of the networks tend to increase
during the calibration and testing periods, especially in
Groups III and IV. However, as noted, their perfor-
mances in the validation period do not show the same
trend. Their performance may be improved in the first
few steps, but usually drops after a certain point. For
example, the best performing networks in the four
groups are ANN_2, _6, _9 and _14, instead of those
with larger number of inputs, suggesting that the gene-
ralization ability of a network may decrease if too many
inputs are used, due to the increased complexity of the
network. As long as the closely related information
representing the causal variables and their lag effect is
provided, the network can generate satisfactory results
without using many variables.

4.2. MLR and PR models

Three MLR models, MLR_A, MLR_B and MLR_C,
with the same inputs as ANN_2, ANN_6 and ANN_9,
respectively, and one PR model were established
(Table 5). The data sets used for calibration and test-
ing in the ANNs were used for calibration in the MLR
and PR models, and the same validation set was used
for all the models.

The RMSE and r2 of the MLR and PR models are
given in Table 4. The r2 values of MLR_A and MLR_B
in the validation period are 0.690 and 0.721, respec-
tively. MLR_C, with Q as an extra input, has the lowest
RMSE (184.69 g s−1) and highest r2 (0.862).

The PR model generates a poorer prediction than the
MLR models. Its r2 is 0.631 in the validation period and
its RMSE is 1135.58 kg s−1. The observed and predicted
suspended sediment fluxes by MLR_A, MLR_B,
MLR_C and PR are plotted in Fig. 5.When the suspended
sediment flux is very low, the MLR models predict
negative values. The PR model overestimates the peaks.

5. Discussion

The performances of the ANN, MLR and PR models
were evaluated in terms of goodness-of-fit, model
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simplicity and data requirement. The goodness-of-fit
was examined by comparing the statistics of the results
(RMSE and r2; Table 4), the scatter plots of the
observed and estimated suspended sediment fluxes
(Fig. 6), and the plots of observed and estimated
cumulative suspended sediment loads (Fig. 7). When
the performance of each neural network group was
compared with the corresponding the MLR and PR
models, the best performing network in each group was
considered.

Group I networks have the lowest data requirement
and relatively simple structure among the ANNs.
However, their goodness-of-fit is lower than the others.
Group II networks perform better than their counterparts
in Group I, but they require daily climatic information to
compile R25 and R50. Because the Groups I and II
networks use only climate data as inputs, they can be
used to predict the sediment flux directly from the
Fig. 5. Comparisons between the observed and predicted sediment fluxes base
climate inputs and to predict the influence of climate
change on the sediment flux, if other situations, e.g. land
use status, can be considered as constant. The Groups III
and IV networks have higher goodness-of-fit than the
Groups I and II networks. However, because water
discharge is used as input, they cannot be used to predict
sediment flux directly from the climate input. Therefore,
in ungauged catchments, one extra step is required to
predict the water discharge before the sediment flux can
be predicted. The error may become cumulative in such
a case and final accuracy may be lower than those in
Table 4.

The comparisons between ANN_2 and MLR_A,
ANN_6 and MLR_B as well as ANN_9 and MLR_C
based on Figs. 4 and 5 indicate that under the same data
requirement or the input combination, the neural
networks generate better estimation than the multiple
regression models do. Both ANN_14 and PR use only
d on validation data: (a) MLR_A, (b) MLR_B, (c) MLR_C, and (d) PR.



Fig. 6. Scatter plots of the observed and predicted sediment fluxes by the best performing ANN in each group and the MLR/PR models, based on
validation data: (a) ANN_2, (b) ANN_6, (c) ANN_9 and (d) ANN_14, (e) MLR_A, (f) MLR_B, (g) MLR_C, and (h) PR. Gray line shows
observed=predicted. Black line shows linear regression line.
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water discharge to predict the sediment flux based on a
nonlinear estimation. The comparison between them
indicates that ANN_14 provides much better estimation.
Furthermore, the neural networks generate more
reasonable predictions for the extreme values of the
output variable. The MLR models may generate



Fig. 7. Comparison between observed and predicted cumulative suspended sediment load values by the best performing ANN of each group and
MLR/PR models based on validation data: (a) MLR_A and ANN_2, (b) MLR_B and ANN_6, (c) MLR_C and ANN_9, (d) PR and ANN_14.
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negative values of sediment flux at the points where
fluxes are zero or close to zero; whereas the neural
networks can generate reasonable estimation due to the
nonlinear transformation process involved. The PR
model overestimates most of the peaks, and very large
overestimations are found at some points. For example,
the estimated value for the first peak in Fig. 5d is 6.4
times as large as the observed one. The cumulative
suspended sediment load predicted by the PR model is
much higher than that by ANN_14 (Fig. 7d).

The selection of the input variables also plays an
important role in determining the accuracy of the
network. Rainfall and temperature were selected from
the originally considered climatic variables including
evaporation and humidity, because they were found
closely correlated with the sediment flux and could be
used to represent the influence of climate. The close
relationship between temperature and sediment flux
may be a result of two mechanisms. First, in the study
area, the average annual potential evaporation is three
times as much as that of the annual rainfall, and
temperature, to some degree, affects the potential
evaporation. Second, temperature, especially in the
previous month, is an index of soil moisture, which
significantly affects soil erosion processes and resultant
sediment supply to rivers. In addition to rainfall and
temperature, adding variables that represent the intensity
of the storm event into the network would improve its
performance, because it is directly related to erosion.
The inclusion of water discharge has further improved
the performance of the network.

The lag effect of the input variables is another issue that
should be taken into account in constructing the network.
The best performing networks in Groups I and II are those
with the information of the current month and the
previous 1 month, suggesting that a 1-month lag-effect
exits between the climate inputs and sediment flux. In
Group III, when T, R andQ are used as inputs, the current
month's information is good enough for the estimation of
the sediment flux, reflecting the strong influence of Q
without lag time. The degree to which the information
from previous time steps should be involved can be
decided from the physical relationship between the inputs
and the output. This research suggests that, if the inputs
are directly or closely related to the output, like water
discharge to sediment, no or only shorter lag effect should
be considered. In other cases a longer lag effect may be
required, as for rainfall and temperature.

Most previous studies that employed ANN to model
water discharge or sediment flux used the values of the
dependant variable at previous time steps as inputs, in
addition to climate variables (Tokar and Markus, 2000;
Raid and Mania, 2004), or used them as the only type of
input to the network (Cigizoglu, 2003; Kisi, 2004).



Fig. 8. Difference between observed and predicted sediment fluxes by
selected ANNs: (a) ANN_2, (b) ANN_6, (c) ANN_9.
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Although it has been proved that the performance of the
network can be improved by including the dependent
variable at previous time steps, the application of such a
network is limited due to the same variable employed.
This type of network actually estimates the difference
between the values of the dependent variable at the
current and previous time steps. More accurate result
generated by this type of network may be of great
interest for applications focusing on the status of water
or sediment themselves, but it does not provide any
information about the contribution of the driving force
such as climate. Furthermore, the application of this type
of network is limited to research on a short temporal
scale. It is usually carried out on an hourly, daily or
weekly scale, and the accuracy of its future prediction
decreases sharply when the prediction time horizon
increases (Campolo et al., 1999), due to limited relations
between water and sediment at a longer temporal
interval.

The ANNs established in this research also provide
information about the influence from factors other than
climate and water discharge on the suspended sediment
flux in the catchment. The records at the Huangguayuan
gauging station showed that the annual suspended
sediment flux increased rapidly after 1990 (Fig. 2). The
annual average suspended sediment load from 1960 to
1989 was 4.02 million tons, while it increased up to
8.07 million tons for the period from 1990 to 2001. A
report from the local hydraulic government attributed this
increase to the increased frequency of intensive rainfall, as
well as change in land use/cover (Chuxiong Hydraulic
Bureau, 1997). If the increase of sediment mainly resulted
from the higher rainfall amount and intensity, it can be
predicted by the ANNs with average rainfall and rainfall
intensity as inputs. Fig. 8 shows the errors of ANN_2,
ANN_6 and ANN_9, which are computed as the
differences between the observed and estimated sus-
pended sediment fluxes. All the three networks generate
consistent lower estimation for most of the months after
1990 (shaded area in Fig. 8). This under-estimation is also
detectable from Fig. 7. The observed and predicted
cumulative sediment fluxes by the ANNs tend to diverge
with time in the beginning, but converge at the end
because the cumulative overestimation in the earlier
period is offset by the underestimation in the later period.
This indicates that the ANNs with average climate status,
rainfall intensity andwater discharge only as inputs cannot
fully predict or explain the increase in sediment after 1990.
In other words, the relationships of the suspended
sediment flux with climate and water discharge have
changed since the 1990s, due to the factors which are not
included as inputs in the networks. Since the early 1990s,
the influence of climate variation seems to bemore limited
than that of human activity. Zhou et al. (2004) and Lu
(2005) denoted that human activity related to land surface
disturbance, such as deforestation, afforestation, intensi-
fied agriculture activity, and road construction played an
important role in the recent increase of suspended
sediment flux in the Longchuanjiang catchment.

6. Conclusions

Artificial neural network (ANN) was applied to
predict the monthly suspended sediment flux in the
Longchuanjiang catchment, by relating it to average
rainfall, temperature, rainfall intensity and water
discharge. It is demonstrated that ANN is capable of
modeling the monthly suspended sediment flux with
fairly good accuracy when proper input variables and
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their lag effect on suspended sediment flux are included.
ANN can generate a better fit to the observed suspended
sediment flux than the multiple regression models and
the power relation model under the same data require-
ment. The most prominent feature of ANN is that it can
provide more reasonable predictions for extremely high
or low values, because of the distributed information
processing system and the nonlinear transformation
involved. Compared with the previous ANN models
which use the values of the dependent variable at
previous time steps as inputs, the models established in
this research with only climate variables as inputs may
have lower goodness-of-fit, but they permit the
assessment of hydrological responses to climate change,
which is an important issue in recent years especially in
relation to global warming.

The ANN models in this research were constructed
under the assumption that land use/cover in the
catchment has remained unchanged during the study
period. However, land use/cover is an important factor
for the production and transportation of sediment. A
more accurate prediction of suspended sediment flux
may be achieved by adding variables representing the
land use/cover status into the neural network. We plan to
perform such analyses for the Longchuanjiang catch-
ment in the near future.
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